Metalloradicals

Paramagnetic Catalysis

John Thompson Dong Group Seminar

September 12th, 2012

Overview

- I. Historical presence of radicals
- II. Metalloradical background
 - I. Generation
 - II. Defining Characteristics
 - III. Detection
- III. Use in Synthesis
 - I. Mn
 - II. Ru
 - III. Co
 - IV. Rh

The First Radical

- 1789: Lavoisier used the term radical to explain single electron elements
- 1900: Gomberg isolated first organic free radical

The Radical Story

- 1933: Pfeiffer discovery of the metalloradical
 - Cobalt complex turned red to black through exposure to air

1959: Classification and study of V(CO)₆ radicals

Kealy, T.; Pauson, P. *Nature*. **1951**, *168*, 1039. Ercoli, R.; Calderazzo, F.; Alberola, A. JACS, **1960**, *82*, 2966.

Hartwig, J. Organotransition metal chemistry: From bonding to catalysis. 2010,

Metal SET Potential

• First ionization potential (electron affinity)

• Oxidative: High Valent Oxo Compounds

McGarrigle. Chem. Rev. 2005, 105, 1563.

Oxidative: High Valent Oxo Compounds

McGarrigle. Chem. Rev. 2005, 105, 1563.

Oxidative: Metal Salts or Mn/Fe/Cu/Ag Complexes

Reductive:

<u>SET:</u> Ti, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag. Or Pt

Fu. Top Organomet. Chem. **2005**, *14*, 85. Angew. Chem. Int. Ed, **2003**, *42*, 384.

• What about a persistent radical?

Example of Metal Initiation

J. Organomet. Chem. 2003, 675, 77.

The Metalloradical

- Paramagnetic compounds can transfer electrons to substrates or ligands
 - Redox Noninnocent Ligands: high or low-metal oxidation states allows ligand orbitals to increase and get oxidized
 - Chemically Noninnocent Ligands: ligands play active role in reaction
 - Innocent Radical Ligands: Excludes nitrosyl groups and large extended pi systems (such as fullerenes)
- Paramagnetic radicals have long lifetimes and react often in low concentrations

Detecting Metal Radicals

- Mechanisms are often speculative
- EPR (Electron paramagnetic Resonance)

EPR Spectra

- Electron Paramagnetic Resonance (EPR)
- Definitive for resolving location of unpaired electron
- Frequently use frozen solutions
- Relies on microwave radiation to induce resonance of electron spins in a magnetic field
- Free electron in nondegenerate orbital with no mixing with excited states only contributes to its angular momentum, which allows it to be distingushed by EPR
- Metal radicals SOMO mix with empty d orbitals

Detecting Metal Radicals

- Mechanisms are often speculative
- EPR (Electron paramagnetic Resonance)

Detecting Metal Radicals

- Mechanisms are often speculative
- EPR (Electron paramagnetic Resonance)
- Metal oxidation state changes (color)
- Paramagnetic metal centers
- Radical traps (ex: TEMPO)

Hoff, C. Coord. Chem. Rev. 2000, 206, 451.

Key Characteristics

- Generation: through thermal, photochemical, or electrochemical cleavage of metal-metal bonds
 - M-M bonds BDE?
- Stability: normally exist as dimer or with labile ligand, inert atmosphere (not always required), non reactive solvent
- High Reactivity: low activation barriers
 - Mo radical has only 1.2 kcal/mol barrier to Habstraction

BDE – Quiz!!!!!

(will not be graded)

Bond

BDE (kcal/mol)

Ph-l

M(CO)_x Radicals Analysis

- V(CO)₆: thermally stable to dimerization, isolable, and 17 e⁻
 - Electron delocalized through CO π network
- Studied radicals of V, Mn, Re, Rh, Os, Co, Cr, W, Fe, and Ru
 - 17 e⁻ metals go through associative and dissociative reactions faster than 18 e⁻ counterparts through possible 19 e⁻ complexes
 - The heavier the metal, the faster the radical reactivity
 - Phosphines:
 - Added electron density on metal increases reactivity
 - Steric bulk hinders

Stabilizing the Rh/Co Radical

Stabilizing the Ru/Os Radical

Zanello. *Gaaz. Chim. Ital.* **1994**, *124*, 271. Peters. *Angew. Chem.* **2007**, *119*, 5870.

Stabilizing the Ru Radical

Berry. JACS. 2010, 132, 4107.

Stabilizing the Radical

Radical Mn Cyclizations

Manganese Radicals

Radical Carbonylative Insertion

Kondo. Tetrahedron Lett. 1988, 29, 3833.

Ru Asymmetric Reaction

24-87%, 10-89%ee

Katsuki. Chem. Lett. 2002, 36.

Ru Salen Mechanism

Oxidation of Cyclopropanol

 $\begin{array}{c|c} R & OH & Ru(salen) \\ \hline O_2, light \\ \end{array} \xrightarrow{HO} O_2$

Cha. Org. Lett., **2000**, 2, 147. Katsuki. JACS. **2005**, *127*, 5396.

R

Regioselective Dehydrohalogenation with Co

	Br <u>2 equiv Me₂PhSiC</u> R 1 dioxane, 25 °C, 1.	H ₂ MgCl 2-3.4 h	/~~ ^R 2	
entry	R	1	tine /n	2/%
1	CH ₂ -1-naphthyl	1b	2	2b , 89
2	$(CH_2)_8OSi(t-Bu)Me_2$	1c	1.5	2c , 86 ^a
3	CH ₂ CH ₂ N(CH ₂ Ph)Ts	1d	2	2d , 79
4	CH ₂ CH ₂ OC ₆ H ₄ -p-Cl	1e	1.2	2e , 99
5	CH ₂ OC(d O)Ph	1f	3.4	2f , 81
6	CH ₂ OC(d O)C ₆ H ₄ -p-CF ₃	1g	1.8	2g, 70
7	CH2OC(d O)(2-thienyl)	1ħ	3	2h , 80
8	$CH(n-C_5H_{11})_2$	1i	1.2	2i , 80

5 mol% CoCl. ≠ IMes-HCI

^{*a*}(*E*)-CH₃CH) CH(CH₂)₈OSi(*t*-Bu)Me₂ [(*E*)-3c] was obtained in 4% yield.

IMES

Oshima. JACS. 2011, 130, 11276.

Regioselective Dehydrohalogenation with Co

^a Co-catalyzed conditions: 5 mol% CoCl₂, 5 mol% IMes HCl, 2 equiv of Me₂PhSiCH₂MgCl, dioxane, 25 °C

Oshima. JACS. 2011, 130, 11276.

Cobalt Radicals

nd^e

nd^e

nd^e

77

26

45

<5

70

Table 1. Reaction Conditions for Cyclopropenation of Phenylacetylene with α -Cyano(*N*,*N*-dimethyl)diazoacetamide by Cobalt(II) Porphyrins^{*a*}

^{*a*} Reactions were carried out at room temperature for 10 h in one-time fashion without slow addition of the diazo reagent using 1 mol % [Co(Por)] under N₂ with 1.0 equiv of α -cyanodiazo(*N*,*N*-dimethyl) acetamide and 1.5 equiv of phenylacetylene. Concentration: 0.10 mmol diazo/mL. ^{*b*} See Figure 1 for structure. ^{*c*} Isolated yields. ^{*d*} Enantiomeric excess determined by chiral HPLC. ^{*e*} Not determined.

PhMe

PhH

 CH_2Cl_2

 $CC1_4$

[Co(P2)]

[Co(P2)]

 $\left[\operatorname{Co}(\mathbf{P2})\right]$

 $\left[\operatorname{Co}(\mathbf{P2})\right]$

6

7

8

9

igure 1. Structures of D₂-symmetric chiral cobalt(II) porphyrins.

Will discuss mechanism for problem 3!

Hint: porphyrin ligand plays role in mechanism

sp³-sp³ Bond Formation through Rh Radicals

C-C bond formation via C-H bond activation

Shi. JACS. 2005, 127, 10836.

Lewis Acid Promoted C-H activation through Rh(I)

Chun-An. Org. Lett., **2004**, *6*, 1001. Shi. JACS. **2005**, *127*, 10836.

Shi Substrates

Table 1. Coupling of Alcohols with Olefins^a

				yidel
eety	defn(F\$F3)	aktab(F3F3)	a calat	€⁄₿
1	R^1) Ph, R^2) H	R ³) CH ₃ , R ⁴) H	1 a	70
2	R^1) Ph, R^2) H	R ³) <i>n</i> -Pr, R ⁴) H	1b	70
3	R^1) Ph, R^2) H	R ³) <i>i</i> -Pr, R ⁴) H	1c	68
4	R^1) Ph, R^2) H	R^3) <i>n</i> - $C_{13}H_{27}$, R^4) H	1d	74
5	R^1) 2-MeC ₆ H ₄ , R^2) H	R^3) CH_3 , R^4) H	1e	65
6	R^1) 3-MeC ₆ H ₄ , R^2) H	R^{3}) CH_{3} , R^{4}) H	lf	78
7	R^1) 4-MeC ₆ H ₄ , R^2) H	R^{3}) CH_{3} , R^{4}) H	1g	63
8	R^1) 2-OMeC ₆ H ₄ , R^2) H	R^{3}) CH_{3} , R^{4}) H	Ū	с
9	R^1) 3-OMeC ₆ H ₄ , R^2) H	R^{3}) CH_{3}, R^{4}) H	1h	57
10	R^1) 4-OMeC ₆ H ₄ , R^2) H	R^3) CH_3 , R^4) H		с
11	R^1) 4-(CH ₂ Cl)C ₆ H ₄ , R^2) H	R^{3}) CH_{3} , R^{4}) H	1i	71
12	R^1) 1-naphthyl, R^2) H	R^{3}) CH_{3} , R^{4}) H	1j	73
13	R^1) 2-ClC ₆ H ₄ , R^2) H	R^{3}) CH_{3}, R^{4}) H	1k	66
14	R^1) 2-BrC ₆ H ₄ , R^2) H	R^{3}) CH_{3}, R^{4}) H	11	64
15	R^1) 2-NO ₂ C ₆ H ₄ , R^2) H	R^{3}) CH_{3} , R^{4}) H		d
16	R^1) Ph, R^2) Ph	R^{3}) CH_{3} , R^{4}) H	1m	64
17	R^1) CH_3 , R^2) CH_3	R^3) <i>n</i> -C ₇ H ₁₅ , R^4) H	1n	31e
18	R^1) Ph, R^2) H	\mathbb{R}^3) \mathbb{CH}_3 , \mathbb{R}^4) \mathbb{CH}_3		с

^{*a*} For detailed experimental operation, see Supporting Information. ^{*b*} Isolated yields of expected products. ^{*c*} Complicated products, and no expected products were isolated. ^{*d*} No reaction. ^{*e*} With 1 equiv of alcohol, 20 equiv of olefin, room temperature.

Rhodium Radical Bergman Cyclization

Uemura. Organometallics. 1998, 17, 2942.

Uemura. Organometallics. 1998, 17, 2942.

Rh Bergman Substrates

R $1 c: R = CH_2CH_2SiMe_3$ $1 d: R = CH_2OSiBu^tMe_2$ $1a: R = C_6H_{13}$ $1e: R = CH_2CH_2SiBnMe_2$ $1f: R = CH_2CH_2SiPr^{i}Me_2$ $1f: R = CH_2CH_2SiPr^{i}Me_2$ $2c: R = CH_2CH_2SiMe_3$ $2g: R = CH_2CH_2OSiBu^tMe_2$ $2h: R = CH_2CH_2OSiPr^{i}Me_2$

Table 1. Formation of Silacycloalkane and Vinylsilane via 1,6- and 1,7-Hydrogen Transfer

Uemura. Organometallics. 1998, 17, 2942.

Rh(por) Radical

ð1Þ

Rh(ttp)

6

- Rh(ttp)H

Rh(ttp)

5 Rh(ttp

Chan. Chem. Comm. 2011, 47, 4802.

Rh(ttp)H

- Rh^{II}(ttp)

Rh(ttp)

2

Bimetalloradicals

- Ti(III)-Rh(I)
- Cr(II)-Co(II)
- Mn(II)-Co(II)
- Mn(II)-Cu(I)
- Ru(II)-Rh(III)

Conclusions

- Offers new alternatives to C-C, C-H and C-X bond formation
- With selective catalyst, mild conditions and fast reactions can be employed for advanced products
- Many common coupling and transformative metal reactions should be tested for radical probes
- Field of organometallic radical chemistry is still young and widely unknown

Questions

Question 1

J. Org. Chem., Vol. 62, No. 7, 1997 1911

Question 2

Question 3

rt, 10h

Н

Ň

- HN

ເງ

Figure 15. Catalytic cycle for Co(por)-catalyzed cyclopropanation of olefins.

EPR For Metal Radicals

- Generally, electron-spin relaxation processes are faster for metal-centered radicals compared to organic (or ligand) radicals – EPR spectra then are taked under 100K (see broadening at rt)
- Small mixings of the metal SOMO will occur with ligand orbitals
- Metal spin-orbit coupling constants are much larger than light weight organic atoms